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Abstract. Graphs have so many applications in real world problems.
When we deal with huge volume of data, analyzing data is difficult or
sometimes impossible and clustering data is a useful tool for these data
analysis. Singular value decomposition(SVD) is one of the best algorithms
for clustering graph but we do not have any choice to select the number
of clusters and the number of members in each cluster. In this paper,
we use hierarchical SVD to cluster graphs to desirable number of clusters
and the number of members in each cluster. In this algorithm, users
can select a range for the number of members in each cluster and the
algorithm hierarchically cluster each clusters to achieve desirable range .
The results show in hierarchical SVD algorithm, clustering measurement
parameters are more desirable and clusters are as dense as possible. In
this paper, simple and bipartite graphs are studied.
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1. Introduction

Clustering data is one of the best preprocessing for data mining because in
clustering data, data with same properties are grouped together and decision for
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these groups is made easier. In some applications, data are modeled as graphs.
For graph clustering, there are some methods like hierarchical methods, parti-
tioning methods and density based methods. One of which is by using SVD. In
most existing clustering methods, users do not have any choice for the number
of clusters and the number of members in each cluster. In some applications,
the number of clusters should be fix or the number of members in each cluster
should be almost equal. In this paper, by using SVD method and hierarchical
methods, graphs can be clustered to desirable number of clusters and there is a
range for the number of members in each cluster. In Section 2, graph clustering
methods are described and some graph measurement parameters are defined.
In this section, also clustering with SVD and its limitations are described. In
Section 3, a new method by using SVD sign method merging with hierarchical
clustering method is defined to cluster graphs. Complexity of this algorithm
is also derived. In Section 4, several data for simple and bipartite graphs like
Facebook data are clustered with SVD and hierarchical SVD methods. Some
conclusion remarks are finally drawn in Section 5.

2. Graph Clustering

2.1. Graph and Graph Clustering. Graphs can be used to model so many
practical problems such as social networks, bioinformatics data, recommenda-
tion systems and information systems[11]. For example in social networks, each
vertex can be assigned to a member and relations between people are shown
as edges. Formally, in graph G(V,E), V is a set of vertices and E is a set of
edges between the vertices in V such that:

E ⊆ {(u, v)|u, v ∈ V }.
A graph is connected when there is at least one path between every pairs of

u, v ∈ V with edges in E.
A graph is dense if the number of its edges are close to maximum number of
impossible edges. The maximum number of edges in a graph with vertices V

and edges E is:
|V |(|V | − 1)

2
(2.1)

and density parameter for this graph is defined as:

D =
2|E|

|V |(|V | − 1)
(2.2)

For a simple graph with vertex set V , the adjacency matrix A is a square
|V |× |V | matrix such that the elements Aij is either one when there is an edge
from vertex i to vertex j, or zero when there is no edge. So adjacency matrix
for simple graph is symmetric.
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A bipartite graph is a graph whose vertices can be divided into two disjoints
and independent sets V1 and V2 such that every edge connects a vertex in V1

to a vertex in V2. When relations between two different classes of objects are
needed, bipartite graphs are used. For example, relations between drugs and
diseases or mines in countries.

The adjacency matrix A for a bipartite graph can be written in the form:

A =

[
0 BT

B 0

]
where submatrix B is a rectangular matrix |V1| × |V2| and asymmetric.
When we deal with huge number of data, analysis of data is difficult and some-
times impossible. In these cases, clustering of data is the best preprocessing
method to uniform data. Grouping data with same properties into some sub-
sets called clustering and each group is called a cluster. In each cluster similar
data are together while different data are in other clusters. For example in
graph clustering, vertices with same connectivity go together[9].
Formally, clustering a graph G(V,E) is represented as a set of subsets C =

{C1, C2, · · · , Ck} such that:

Ci ⊂ V, ∀i = 1, · · · , k

V =
∪
i=1

k
Ci

Ci

∩
Cj = ϕ, ∀i ̸= j

For bipartite graph, it is often necessary to cluster vertices V1 or V2. For
example, in related graphs between countries and mines, often countries should
be clustered. So in matrix B, for clustering V1, rows of B should be clustered
and for clustering V2, columns of B should be clustered. Because SVD can be
used for all types of matrices, B can be clustered by SVD method.

2.2. Clustering Methods. The most well-known clustering methods are hier-
archical methods, partitioning methods, density based Methods, model-based
clustering methods and fuzzy clustering. In following some methods are de-
scribed:
1) Hierarchical Methods: These methods, cluster recursively data in either
top-down or bottom-up fashion. Subdivides of these methods are as follow:
Merging hierarchical clustering: Each object initially is a cluster with one mem-
ber, then clusters are merged together until the desired clustering is obtained.
Divisive hierarchical clustering: All objects initially belong to one cluster. Then
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each cluster is divided into sub clusters until the desired clustering is obtained.
2) Partitioning Methods: In partitioning methods, algorithms start with
an initial clustering and by using an optimization scale tries to replace mem-
bers between clusters. In this method, the numbers of partitions are fixed and
subdivides of this method are different by optimization scale.
3) Model-based Clustering Methods: These methods attempt to model
data in some mathematical models like decision trees or neural networks and
next try to cluster these new models. For more details see[8].

2.3. Clustering measures. Which clustering is acceptable? Unfortunately,
there is not unique definition for clustering measurement and also in some ap-
plications clusters should have some properties, for example some applications
need fix number of clusters or the number of members in each cluster should be
almost equal. Each clustering method can satisfy some properties, for example
in partitioning methods, number of clusters are fixed. In graph clustering, one
can also define some clustering measurements, for example each cluster should
intuitively be connected, in the other word, if u and v are in cluster C, at least
a path should be between u and v with edges in C. Another measurement for
graph clustering is based on density as follow:
Let graph G(V,E) be clustered as C = {C1, C2, · · · , Ck}:

InternalEdges(i) = |{(u, v)|u, v ∈ Ci, (u, v) ∈ E}|, 1 ≤ i ≤ k

ExternalEdges(i) = |{(u, v)|u ∈ Ci and v ∈ Cj , (u, v) ∈ E, 1 ≤ i, j ≤ k, i ̸= j}|
Degree(u) = |{(u, v)|u ̸= v), (u, v) ∈ E}|

Internaldegree(i) = |{(u, v)|u, v ∈ Ci, u ̸= v}| = |Ci|(|Ci|−1)
2 , 1 ≤ i ≤ k

InternalEdges =
∑k

i=1 InternalEdges(i)

ExternalEdges =
∑k

i=1 ExternalEdges(i)

Internaldegree =
∑k

i=1 Internaldegree(i)

Clearly clustering C is a good clustering if InternalEdges ≃ Internaldegree

and ExternalEdges ≃ 0. In the other word, each cluster should be dense as
possible and the number of edges between clusters should be small[9].

2.4. SVD and its application in clustering. Singular value decomposition
(SVD) is recalled as a reminder.
Singular value decomposition (SVD) is decomposing matrix A to three matri-
ces U, S and V such that U and V are orthogonal and S is a diagonal matrix
with singular values on its diagonal. SVD has so many applications in com-
puter science such as signal processing, image compressing, clustering data and
reduction noises from signal and images. By having SVD of a matrix, one can
compute the pseudoinverse, least squares fitting of data, matrix approximation,
determine the rank, range and null space of a matrix. For more details see [3].
SVD can be computed for all matrices not just for square or symmetric or real
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matrices, so all matrices can be decomposed with SVD.

Definition 2.1. Let A be a real m× n matrix. SVD of A is:

A = USV T , (2.3)

where U and V are orthogonal and S = diag(σ1, σ2, · · · , σr) where r =

min(m;n) and σ1, σ2, · · · , σr > 0. The σ′
is(1 < i < r) are called the singular

values of A and the first r columns of V are the right singular vectors and the
first r columns of U are the left singular vectors of A. If matrix A is not a real
matrix, U and V are unitary and S is diagonal[5].
For computing SVD, the best method is Golub Kahan Reinsch algorithm. This
algorithm has two phases, in first phase, matrix A is reduced to a bidiagonal
matrix B and in next phase matrix B is reduced to a diagonal matrix and its
time complexity is 2m2n+ 4mn2 + 9

2n
3.

Another method for computing SVD is by using eigen decomposition[2]. Com-
puting singular value decomposition by using eigen decomposition is as follow:
The left-singular vectors of matrix A, are a set of orthogonal eigenvectors of
AAT .
The right-singular vectors of matrix A, are a set of orthogonal eigenvectors of
ATA.
The non-zero singular values of A, are the square roots of the non-zero eigen-
values of both ATA and AAT .
The eigen decomposition can give information about the connectivity of the
graph, so this information also exists in SVD.
Clustering with SVD:
Clustering with SVD is derived from Fiedler method. In Fiedler method first
the Laplacian matrix is obtained as (A − D) where D is a diagonal matrix
and its elements is the degree of each vertex. Next, eigen decomposition of
Laplacian matrix is obtained and second eigenvector (is called Fiedler vector)
is selected. By using the signs of this eigenvector, rows of matrix clustered
in two clusters such that the rows with the same sign are placed in the same
cluster. The Fiedler method, divides graph in two sub graph and repeat eigen
decomposition for each sub graph until desired clustering is obtained. The
Fiedler method has some limitations. First, Fiedler method only works for
square symmetric matrices. Second, this method is iterative and any mistake in
any iterative can be extend in further iterations and new eigen decompositions
must be computed at every iteration, so it is expensive for large datasets. For
more details see[6].

As mentioned above, SVD has relation with eigen decomposition so left sin-
gular vectors and right singular vectors also have information about matrix
connectivity.
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Figure 1. SVD clustering sign method

Figure 2. SVD clustering gap method

In SVD method of clustering for graph G(V,E) first, adjacency matrix of
graph should be derived and by using this matrix, graph can be clustered. SVD
method clustering is based on signs of singular vector elements(entries) or gaps
between singular vector elements.

In SVD clustering sign method, sign patterns of elements of the singular
vectors are considered. Sign pattern of columns of U can cluster rows of matrix
and signs pattern of columns of V T , can be used to cluster the columns of
matrix. For example, in Figure 1 we have two columns of U and by its signs
pattern, rows 2 and 5 are in a cluster and rows 3 and 4 and in another cluster
and row 1 in another cluster.

In SVD clustering gap method, elements of singular vectors are sorted and
rows and columns are clustered where gaps accrued in this sorted vectors. In
Figure 2, gaps in a vector of U are in a , b and c and with these gaps rows of
matrix can be clustered in 4 clusters. For more details see[6]

Clustering methods with SVD limitations are the number of clusters and the
number of members in each cluster. By using k singular vectors, the number
of clusters can be between 1 and 2k. In Figure 3(a), the number of clusters are
big and in Figure 3(b), the number of clusters are small. Also, the number of
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Figure 3. Number of clusters

Figure 4. Number of members in each cluster

members in each cluster can be between 1 and the size of matrix. In Figure
4, some of clusters have so many members and some of the clusters have few
members[9].

3. Hierarchical SVD Method

In clustering with SVD methods, the number of clusters and the number
of members in each cluster are not selectable and sometimes there are clusters
with just a few members or clusters with many members. These clustering are
not useful. In some applications, the number of clusters are important and
often the number of cluster members should be in a fix range. For example,
in telecommunications network, the number of users in each station should be
almost equal, otherwise, network is not optimal. In hierarchical SVD method,
range of each cluster [R1, R2] is a parameter for algorithm, so the number of
clusters and the number of cluster members are selectable for users.
In proposed hierarchical SVD algorithm, SVD sign clustering method is used.
In this paper, first right and left singular vectors are used. With this singular
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vectors, rows and columns of matrix will be clustered into two clusters. For
large datasets, one can use more singular vectors in each iterations, so often in
each iteration the number of clusters are more than two. If matrix is symmetric,
the SVD sign method clusters rows and columns in the same order but for
asymmetric or rectangular matrices the orders are not the same, so for these
matrices the range should be used for rows or columns. Here, ranges are used for
row clustering. For column clustering, the input matrix should be transposed.
In hierarchical SVD algorithm, after the first iteration, the SVD sign method
clusters matrix A into two submatrices A1 and A2. Submatrix A1 can be in 3
states:

• The number of rows in A1 is between R1 and R2, so A1 is a good cluster
and goes to ClusteredMatrix as a submatrix.

• The number of rows in A1 is less than R1, so A1 is a small cluster and
goes to RestMatrix as a submatrix.

• The number of rows in A1 is more than R2, so A1 must be clustered
recursively.

For A2 also these 3 states must be checked(see algorithm 1). At last step of al-
gorithm 1, the rest matrices must be attached to ClusteredMatrix. At first for
each submatrix in RestMatrix, the number of common edges with each good
submatrix must be computed. Secondly, each rest submatrix attache to a Clus-
teredMatrix submatrix with maximum common edges if the number of rows
in ClusteredMatrix submatrix is less than R2. For more details see algorithm 2.

For graph clustering with hierarchical SVD, first adjacency matrix should
be derived. For simple graph, this adjacency matrix is symmetric and row
clustering is same as column clustering. For bipartite graph (V1, V2, E) after
deriving adjacency matrix A for clustering, it is enough to cluster submatrix
B. For clustering V1, rows of B should be clustered and for clustering V2, rows
of BT should be clustered.

3.1. Complexity and analysis of Algorithm HSVD. Complexity of algo-
rithm SVD for matrix Am×n, (m > n) is O(m2n). When A is a square matrix
(n = m), so complexity of algorithm of graph clustering by using SVD is O(n3).
Hierarchical SVD clustering is a recursive algorithm and the best case is when
in each iteration, size of submatrices A1 and A2 are |A/2| and so complexity
of algorithm is:

T (n) = O(n3) + 2T (n/2) = O(n3logn) (3.1)

When matrix is square and symmetric, first singular value and vectors can be
computed in O(n2)[4]. Therefore, if input matrix in hierarchical SVD algorithm
is square and symmetric, and only first singular vectors is used in each iteration,
complexity of algorithm is O(n2logn).
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Algorithm 1 Hierarchical SVD
1: Input: A,R, where A is a matrix m× n and R is a rage [R1, R2]

2: Output: FinallClustring, where FinallClustring is reordered matrix A that
is clustered

3: Find [U1, S1, V1] = SV D(A, 1)

4: CR1 = Rows of A where signs in U1 is negative
5: CC1 = Columns of A where signs in V1 is negative
6: CR2 = Rows of A where signs in U1 is positive
7: CC2 = Columns of A where signs in V1 is positive
8: If |CR1| < R add A(CR1, CC1) to RestMatrix
9: Else If |CR1| in R add A(CR1, CC1) to ClusteredMatrix

10: Else If |CR1| > R repeat HierarchicalSVD(A(CR1, CC1), R)
11: End if
12: If |CR2| < R add A(CR2, CC2) to RestMatrix
13: Else If |CR2| in R add A(CR2, CC2) to ClusteredMatrix
14: Else If |CR2| > R repeat HierarchicalSVD(A(CR2, CC2), R)
15: End if
16: MinClusterNum=⌈ A

R2
⌉

17: If cluster number of ClusteredMatrix < MinClusterNum add empty
cluster to ClusteredMatrix

18: End if
19: Call FinallClustring(ClusteredMatrix, RestMatrix)

Algorithm 2 FinallClustring
1: Input: ClusteredMatrix, RestMatrix,
2: Output: ClusteredMatrix
3: For each cluster P1 in RestMatrix
4: For each cluster P2 in ClusteredMatrix
5: If maximum common edges are between P1 and P2 and |P1 + P2| ≤ R2

add P1 to P2

6: End for
7: End for
8: For each cluster P1 in RestMatrix that is not attached to ClusteredMatrix
9: For each row R in P1

10: For each cluster P2 in ClusteredMatrix
11: If maximum common edges are between R and P2 add R to P2

12: End for
13: End for
14: End for
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This algorithm can be used to cluster data sets to desirable number of clusters
and the number of members in each clusters can be selected. For square and
symmetric matrices time complexity of algorithm is O(n2logn) and for another
matrices is O(n3logn). In this algorithm the number of singular vector that
be used is one and so in each iterations, each cluster divides into two clusters.
Because of high complexity of algorithm for huge data, in each iterations more
than one singular vectors can be used to cluster data in more cluster numbers.

4. Results

In experiments, the results of hierarchical SVD method are compared with
SVD sign method. The algorithms are implemented in Matlab and used SVD
of Matlab. The version of Matlab is R2012a and results are for simple and
bipartite graph.

4.1. Results for simple graph. In first experiment, a random graph with 24
vertices was tried. In Figure 5, matrix (a) is the first matrix that is derived
from graph (b). For this graph, we run SVD sign algorithm for 2 first singular
vectors(k=2) and 3 first singular vectors(k=3) and hierarchical SVD algorithm
for range [4,5]. The results are shown in Figure 5 and Table 1. As mentioned in
section 2.3, a clustering is good where InternalEdges is large and ExternalEdges
is low and minimum and maximum number of members in clusters be in a ac-
ceptable range. The results show, when in SVD sign method k=2, range of the
number of members is between 2 and 7 and when in sign SVD method k=3,
range of the number of members is between 2 and 6 but in hierarchical SVD al-
gorithm, the range is between 4 and 5 and InternalEdges is more than SVD sign
algorithm results and ExternalEdges is less than SVD Sign algorithm results.
So in hierarchical SVD method, the measurement parameters for clustering is
better than SVD sign method.

Table 1. Graph clustering results

Method ClusterNum InternalEdges ExternalEdges MinMember MaxMember

SVD k=2 4 78 22 2 7
SVD k=3 7 24 76 2 6

HSVD 5 68 32 4 5

In the next experiment, a random matrix with 2000 vertices is used. In
Figure 6 the first matrix is random matrix. For this matrix, we run SVD sign
algorithm for 3 first singular vectors(k=3) and 4 first singular vectors(k=4) and
hierarchical SVD algorithm for the range between 200 and 300. The results are
shown in Figure 6 and Table 2. The results show, when in SVD sign method
k=3, range of the number of members is between 125 and 342 and when in
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Figure 5. Graph clustering with SVD and HSVD
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Figure 6. Random matrix clustering with SVD and HSVD

sign SVD method k=4, range of the number of members is between 52 and
240 but in hierarchical SVD algorithm, the range is between 207 and 291 and
InternalEdges is more than SVD sign algorithm results and ExternalEdges is
less than SVD sign algorithm results.

Table 2. Random matrix clustering results

Method ClusterNum InternalEdges ExternalEdges MinMember MaxMember

SVD k=3 8 40682 74097 125 342
SVD k=4 16 27027 87752 52 240

HSVD 7 66232 48547 207 291
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In next experiment, we used Facebook data for 4020 members and relations
between them. In Figure 7, the first matrix is Facebook data that is changed
to matrix. For this matrix, we run SVD sign algorithm for 4 first singular
vectors(k=4) and 5 first singular vectors(k=5) and hierarchical SVD algorithm
for range between 150 and 350. The results are shown in Figure 7 and Table
3. The results show, when in SVD sign method k=4, range of the number of
members is between 2 and 2577 and when in SVD sign method k=5, range of the
number of members is between 1 and 2094 but in hierarchical SVD algorithm,
the range is between 160 and 325 and InternalEdges is more than SVD sign
algorithm results and ExternalEdges is less than SVD sign algorithm results.
So in hierarchical SVD method, the measurement parameters for clustering is
better that SVD Sign method.

Table 3. Facebook data results

Method ClusterNum InternalEdges ExternalEdges MinMember MaxMember

SVD k=4 14 135254 33054 2 2577
SVD k=5 23 132628 35680 1 2094

HSVD 16 142694 25614 160 325

4.2. Results for bipartite graph. In the next experiment, a random graph
with V1 = 2000 and V2 = 100 vertices is used. In Figure 8, the first matrix is the
graph adjacency matrix. For this matrix, we run SVD sign algorithm for 3 first
singular vectors(k=3) and 4 first singular vectors(k=4) and hierarchical SVD
algorithm for the range between 200 and 300. The results are shown in Figure
8 and Table 4. The results show, when in SVD sign method k=3, range of the
number of members is between 114 and 426 and when in sign SVD method k=4,
range of the number of members is between 52 and 341 but in hierarchical SVD
algorithm, the range is between 220 and 299 and InternalEdges is more than
SVD sign algorithm results and ExternalEdges is less than SVD sign algorithm
results.

Table 4. Random bipartite graph clustering results

Method ClusterNum InternalEdges ExternalEdges MinMember MaxMember

SVD k=3 8 3118 4801 114 426
SVD k=4 16 2300 5619 52 341

HSVD 8 3303 4616 220 299

In the next experiment, graph for relation between Iran’s provinces and
mines are collected. The number of provinces is 29( V1 = 29) and the number
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Figure 7. Facebook data clustering with SVD and HSVD

of mines is 76(V2 = 76). In Figure 9, the first matrix is the graph adjacency
matrix. For this matrix, we run SVD sign algorithm for 3 first singular vec-
tors(k=3) and 4 first singular vectors(k=4) and hierarchical SVD algorithm for
the range between 4 and 6. The results are shown in Figure 9 and Table 5. The
results show, when in SVD sign method k=3, range of the number of members
is between 1 and 22 and when in sign SVD method k=4, range of the number
of members is between 1 and 17 but in hierarchical SVD algorithm, the range
is between 4 and 6 and InternalEdges is more than SVD sign algorithm results
and ExternalEdges is less than SVD sign algorithm results.

In the next experiment, Movielens latest dataset is used. This dataset con-
sists of approximately 100k ratings by 610( V1 = 610) user for 9724(V2 = 9724)
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Figure 8. Random bipartite graph clustering with SVD and HSVD

Table 5. Iran’s province clustering based on their mines results

Method ClusterNum InternalEdges ExternalEdges MinMember MaxMember

SVD k=3 5 61 289 1 20
SVD k=4 7 40 310 1 17

HSVD 5 93 257 4 6

movies. In Figure 10, the first matrix is the graph adjacency matrix. For this
matrix, we run SVD sign algorithm for 4 first singular vectors(k=4) and 5 first
singular vectors(k=5) and hierarchical SVD algorithm for the range between
50 and 100. The results are shown in Figure 10 and Table 6.

Table 6. Movielens latest dataset clustering results

Method ClusterNum InternalEdges ExternalEdges MinMember MaxMember

SVD k=4 9 22384 78452 1 159
SVD k=5 17 11332 89504 1 94

HSVD 7 13380 87456 67 97
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Figure 9. Iran’s provinces clustering based on their mines
with SVD and HSVD

Figure 10. Movielens latest dataset clustering with SVD and HSVD

5. Conclusion

In graph clustering for some applications, it is important that each cluster be
dense as possible and the number of members in each cluster be almost equal.
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The SVD method clustering is one of the best tools for clustering but users do
not have any chance to select the number of clusters and a range for the number
of members in each cluster. In hierarchical SVD method, we changed SVD
sign method with using hierarchical methods for clustering to improve SVD
method clustering. In hierarchical SVD method, users can select a range for the
number of members in each cluster, so the number of clusters are also desirable.
The results show the measurement parameter for clustering by hierarchical
SVD method is better than SVD method. This algorithm is recursive and
in each iterations, with using first singular vectors, each cluster divides into
tow clusters. For simple graph adjacency matrix is square and symmetric and
so the time complexity of algorithm is O(n2logn), but for another graphs, the
complexity of algorithm is O(n3logn). So for achieve desirable clustering faster,
in each iterations more than one singular vectors can be used for dividing each
cluster into more than two clusters.
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